(Grönbæk \& Rasmussen, 1962). The $\beta$-isomer contains two independent sets of complex ions, one of cis- and another of trans-planar configuration (Hazell, 1968). The $\mathrm{Ni}-\mathrm{S}$ bond of the cis complex is significantly shorter than that of the trans complex [ $2 \cdot 149$ (1) and 2.169 (1) $\AA$, respectively]. The molecular structures of cis and trans nickel dithiosemicarbazide dinitrate have been determined [Hazell (1972), $\mathrm{Ni}-\mathrm{S}$ bond lengths $2 \cdot 150$ (5) and $2 \cdot 185$ (1) $\AA \AA$ respectively].

We thank R. Villena for data collection and M. Torres and R. Patiño for technical assistance.

## References

GrönbÆk, R. \& Rasmussen, S. E. (1962). Acta Chem. Scand. 16, 2325-2336.
Hazell, R. G. (1968). Acta Chem. Scand. 22, 2171-2182.
Hazell, R. G. (1972). Acta Chem. Scand. 26, 1365-1374.
Sheldrick, G. M. (1983). SHELXTL Users Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1991). C47, 2668-2669

# 2-Thia[3]ferrocenophane $S$-Oxide 

By Mark S. Erickson, Yanhu Yu, Frank R. Fronczek and Mark L. McLaughlin* Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 22 April 1991; accepted 2 July 1991)


#### Abstract

Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SOCH}_{2}-\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], \quad M_{r}=\) 260.1, $P 2_{1} / c, \quad a=13.195$ (2), $\quad b=7.476$ (2), $\quad c=$ 10.541 (2) $\AA, \beta=95.00$ (2) ${ }^{\circ}, V=1035.9$ (7) $\AA^{3}, Z=$ $4, D_{x}=1.668 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=$ $16.13 \mathrm{~cm}^{-1}, F(000)=536, T=299 \mathrm{~K}, R=0.028$ for 2465 observed data (of 3017 unique data). The $\eta^{5}$ cyclopentadienyl ligands each exhibit a maximum deviation of 0.006 (2) $\AA$ from planarity. The bridging C atoms lie out of these planes by 0.114 (2) and 0.079 (2) $\AA$ toward Fe . The Fe atom lies 1.635 (1) $\AA$ from each plane. The two rings form a dihedral angle of $5.9(5)^{\circ}$, and the Cp centroid- $\mathrm{Fe}-\mathrm{Cp}$ centroid angle is $175.7^{\circ}$. The $\mathrm{S}=\mathrm{O}$ distance is 1.501 (2) $\AA$.


Experimental. The title compound (1) was prepared by 3 -chloroperbenzoic acid oxidation of 2 -thia[3]ferrocenophane (Ando, Hanyu, Kumamoto \& Takata, 1986) and recrystallized from refluxing ethanol to afford yellow-orange needles, m.p. 474.5-475 K.

(1)

A needle fragment of dimensions $0.28 \times 0.38 \times$ 0.45 mm , was used for data collection on an EnrafNonius CAD-4 diffractometer with Mo $K \alpha$ radiation and a graphite monochromator. Cell dimensions

[^0]were determined at 299 K by a least-squares fit to setting angles of 25 reflections having $19>\theta>12^{\circ}$. One quadrant of data having $1<\theta<30^{\circ}, 0 \leq h \leq$ $18,0 \leq k \leq 10,-14 \leq l \leq 14$ was measured by $\omega-2 \theta$ scans at speeds ranging from 0.45 to $4.0^{\circ} \mathrm{min}^{-1}$ to measure all significant data with approximately equal precision. Three standard reflections ( $500,040,004$ ) exhibited only a random fluctuation in intensity so no correction for decay was applied. Data reduction included corrections for background, Lorentz, polarization and absorption. Absorption corrections were based on $\psi$ scans, with maximum transmission coefficients $91.56 \%$.

The space group was determined by systematic absences $h 0 l$ with $l$ odd, and $0 k 0$ with $k$ odd. The structure was solved by heavy-atom methods and refined by full-matrix least squares based on $F$, with weights $w=4 F_{o}^{2}\left[\sigma^{2}(I)+\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$ using the Enraf-Nonius Structure Determination Package (Frenz, 1980), scattering factors of Cromer \& Waber (1974), anomalous coefficients of Cromer (1974), and data having $I>3 \sigma(I)$. Heavy-atom coordinates were refined with anisotropic thermal parameters; H -atom coordinates were located by $\Delta F$ synthesis and were refined with isotropic thermal parameters. Final $R=$ 0.028 ( $R=0.041$ for all 3017 data), $w R=0.038, S=$ 1.810 for 185 variables. Largest shift was $0.02 \sigma$ in the final cycle, maximum and minimum residual density 0.45 and $-0.37 \mathrm{e} \AA^{-3}$, extinction coefficient $g=8.9(5) \times 10^{-7}$, where the correction factor ( $1+$ $\left.g I_{c}\right)^{-1}$ was applied to $F_{c}$.

The fractional coordinates of the title compound are given in Table 1. Fig. 1 is a perspective drawing showing the atom numbering, and Fig. 2 is a unit-

Table 1. Coordinates and equivalent isotropic thermal parameters

|  | $B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $B_{\text {cq }}\left(\AA^{2}\right)$ |
| Fe | 0.18310 (2) | 0.02059 (3) | 0.38809 (2) | 2.041 (4) |
| S | 0.43775 (4) | -0.01823 (7) | 0.32863 (5) | 3.314 (9) |
| 0 | 0.5286 (1) | -0.0873 (3) | 0.2675 (2) | 4.92 (4) |
| Cl | 0.2510 (1) | 0.1234 (2) | 0.2397 (2) | 2.51 (3) |
| C2 | 0.2436 (1) | 0.2574 (2) | 0.3350 (2) | 2.84 (3) |
| C3 | 0.1392 (2) | 0.2795 (3) | 0.3545 (2) | 3.37 (4) |
| C4 | 0.0814 (1) | 0.1625 (3) | 0.2704 (2) | 3.42 (4) |
| C5 | 0.1500 (1) | 0.0670 (3) | 0.2002 (2) | 3.00 (3) |
| C6 | 0.2805 (1) | -0.1778 (2) | 0.4467 (2) | 2.55 (3) |
| C7 | 0.2678 (1) | -0.0580 (3) | 0.5500 (2) | 2.84 (3) |
| C8 | 0.1625 (2) | -0.0543 (3) | 0.5708 (2) | 2.85 (3) |
| C9 | 0.1096 (1) | -0.1723 (3) | 0.4821 (2) | 2.84 (3) |
| C10 | 0.1821 (1) | -0.2490 (2) | 0.4067 (2) | 2.79 (3) |
| C11 | 0.3462 (1) | 0.0455 (3) | 0.1964 (2) | 3.13 (4) |
| C12 | 0.3757 (1) | -0.2168 (3) | 0.3867 (2) | 3.52 (4) |

Table 2. Bond distances ( $\AA$ ), selected bond angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$

| $\mathrm{Fe}-\mathrm{Cl}$ | 2.021 (2) | $\mathrm{C} 1-\mathrm{C} 2$ | 1.427 (3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}-\mathrm{C} 2$ | 2.040 (2) | $\mathrm{Cl}-\mathrm{C} 5$ | 1.424 (2) |
| $\mathrm{Fe}-\mathrm{C} 3$ | 2.042 (2) | $\mathrm{Cl}-\mathrm{Cll}$ | 1.492 (3) |
| $\mathrm{Fe}-\mathrm{C4}$ | 2.043 (2) | C2-C3 | 1.420 (3) |
| $\mathrm{Fe}-\mathrm{C} 5$ | 2.021 (2) | C3-C4 | 1.420 (3) |
| $\mathrm{Fe}-\mathrm{C} 6$ | 2.023 (2) | C4-C5 | 1.412 (3) |
| $\mathrm{Fe}-\mathrm{C} 7$ | 2.043 (2) | C6--C7 | 1.431 (3) |
| $\mathrm{Fe}-\mathrm{C} 8$ | 2.047 (2) | C6-Cl0 | 1.431 (2) |
| $\mathrm{Fe}-\mathrm{C} 9$ | 2.042 (2) | C6-C12 | 1.483 (3) |
| $\mathrm{Fe}-\mathrm{Cl0}$ | 2.025 (2) | C7-C8 | 1.426 (3) |
| S-O | 1.501 (2) | C8-C9 | 1.424 (3) |
| S-Cl1 | 1.826 (2) | C9-C10 | 1.418 (3) |
| $\mathrm{S}-\mathrm{Cl} 2$ | 1.827 (2) |  |  |
| $\mathrm{O}-\mathrm{S}-\mathrm{Cl1}$ | 105.2 (1) | $\mathrm{O}-\mathrm{S}-\mathrm{Cl2}$ | 105.2 (1) |
| $\mathrm{Cl1}-\mathrm{S}-\mathrm{Cl2}$ | 100.46 (9) | $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 5$ | 107.1 (2) |
| $\mathrm{C} 7-\mathrm{C} 6-\mathrm{Cl} 0$ | 107.1 (2) | $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 11$ | 126.9 (2) |
| C7-C6--C12 | 127.3 (2) | $\mathrm{C5}-\mathrm{Cl}-\mathrm{Cll}$ | 125.9 (2) |
| $\mathrm{Cl} 0-\mathrm{C} 6-\mathrm{Cl2}$ | 125.5 (2) | $\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$ | 108.1 (2) |
| C6-C7-C8 | 108.1 (2) | C2-C3-C4 | 108.2 (2) |
| C7-C8-C9 | 108.4 (2) | C3-C4-C5 | 107.7 (2) |
| C8-C9-C10 | 107.6 (2) | C1-C5-C4 | 108.8 (2) |
| C6-C10-C9 | 108.9 (2) | S-Cll-Cl | 112.8 (1) |
| S-C12-C6 | 113.8 (1) |  |  |
| $\mathrm{O}-\mathrm{S}-\mathrm{Cll}-\mathrm{Cl}$ | -178.2 (2) | $\mathrm{C11-S-C12-C6}$ | -68.6 (2) |
| C12-S-Cll-Cl | 72.7 (2) | C2-C1-C11-S | 46.8 (3) |
| $\mathrm{O}-\mathrm{S}-\mathrm{Cl2-C6}$ | - 177.7 (2) | C7-C6-C12-S | - 55.4 (3) |

cell diagram. Bond distances, selected bond angles and torsion angles are presented in Table 2.*

Related literature. For other examples of crystal structures of [3]ferrocenophanes see Hillman \& Austin, (1987). Curiously, the 2 -thia[3]ferrocenophane (Hillman \& Austin, 1987) is also $P 2_{1} / c$ with very similar cell dimensions except that $a$ and $c$ are interchanged. The molecular structure is also very similar to that of the title compound. The Fe centroid distance in both compounds is approximately $1.63 \AA$ and the dihedral angle formed by the rings is $5.9^{\circ}$ in the title compound and $6.0^{\circ}$ in

[^1]

Fig. 1. ORTEP drawing (Johnson, 1965) of the molecule, representing heavy atoms as $50 \%$ probability ellipsoids and H atoms as spheres of arbitrary radius.


Fig. 2. PLUTO stereopair (Motherwell \& Clegg, 1978) of the unit cell viewed slightly oblique to the $b$ axis.

2-thia[3]ferrocenophane. Also, the average S -methylene-C bond distance is $1.826 \AA$ for the title compound compared to $1.82 \AA$ in 2-thia[3]ferrocenophane, with $\mathrm{C}-\mathrm{S}-\mathrm{C}$ bond angles of 100.46 and $101.6^{\circ}$ respectively.

We thank the LSU-Center for Energy Studies and the Louisiana Educational Quality Support Fund Grant No. LEQSF (1987-90)-RD-A-5 for support of this research.

## References

Ando, W., Hanyu, Y., Kumamoto, Y. \& Takata, T. (1986). Tetrahedron, 42, 1989-1994.
Cromer, D. T. (1974). International Tables for $X$-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for $X$-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Frenz, B. A. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Hillman, M. \& Austin, J. (1987). Organometallics, 6, 1737-1743.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PlUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.


[^0]:    * Author to whom correspondence should be addressed.

[^1]:    * Lists of H -atom coordinates and thermal parameters, structure-factor amplitudes, bond distances and angles involving H , bond angles, torsion angles, and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54427 ( 24 pp.). Copies may be obtained through the Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

